

Dr. Kevin Mills

Dr. Jean Scholtz

Human-Information Interaction that transcends the desktop

People work and live on the move

Rescue Workers

Police Officers

Doctors

Factory Workers

Soldiers

Sailors

How do people on the go interact with information today?

Growing population of portable, embedded, wearable computing devices, each specialized for particular tasks, but

- User interacts with each device independently
- Applications control, format, and present specific information
- User must track, convert, and transfer information across devices

Two Things Have Changed

1. Networking-capable PDAs, Sensors, and Devices

IrDA and Blue Tooth Wireless LANs and Fire Wire and USB Plug-and-Play Buses

2. Location-aware Devices

GPS, Cell Phones, Active Badges

Toughest Issues?

Three Hard Problems

Smart Spaces to GoCoordinating Interactions

New Idea: Poly-Device, Poly-Modal Interface

Develop a distributed coordination bus that:

- enables coordinated user interactions, individually or collaboratively, across multiple physical devices and multiple modalities
- dynamically composes interfaces optimized for tasks, modalities, and devices

Multi-modal interaction and tracking exists in ITO research prototypes

Multi-party, distributed event buses developed by ITO

Multi-media, crossdevice drag-and-drop developed by ITO

Smart Spaces to Go Managing Information Mobility

New Idea: Active Information

Develop systems of mobile, replicable objects that communicate as groups to:

- track location, state, and trajectory of information users, replicas, and linked objects
- plan information movement and replication
- implement consistency, access, and sharing policies among objects and replicas

Commercial push toward distributed objects and mobile code

New multicast, transcoding, and beaconing protocols emerging from ITO research

Processing-capable network infrastructures under development in ITO programs

Smart Spaces to GoAdapting Information Delivery

New Idea: Inter-Space

Couple sensor data with resource and scene description languages to model physical and logical space, as perceived by people, so that software can:

- exploit location, proximity, visibility of resources to determine delivery devices
- adapt presentation to characteristics of available devices and services

Vision-based computational geometry research funded by DARPA

Increase Information Access

Source: Bellotti and Bly study of distributed collaboration in a product design team, <u>Proceedings CSCW 96</u>.

- 10-13% of work completed at desktop
- 76-82% of work spread between 11 other locations
- 8-11% of time spent moving between locations

What difference?

Increase Task Productivity

- Service sector IT investment rises 8% yearly
- Service sector productivity remains flat

Source: Thomas K. Landauer, <u>The Trouble with Computers</u>, 1996, citing data from Roach, 1992

- Computers on desktop: 54% >= 3; 39% = 2; 7.7% = 1
- Transfer data between desktop computers:
 70% very often and 25% often
- Transfer data between nearby computers:
 28% very often; 23% often; 36% sometimes

Source: Jun Rekimoto, study of software engineers <u>Proceedings of the ACM Symposium on User Interface Software Technology (UIST)</u>, 1997

Human-Information Interaction that transcends the desktop

Well-Worn HCI Model

Windows, Icons, Menus, Pointing

User Manages Personal Information

User Initiates All Interactions

Application Software Formats Data

New Smart Spaces HII Paradigm

Multi-device, Multi-modality Interaction

Critical Information Follows User

Information Anticipates User Needs

Information Adjusts to Task/Environment

